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Introduction
Today, we are surrounded by a massive amount of data which are produced by social 
media, web surfing, embedded sensors, IoT nodes, and so on. According to the Inter-
national Data Corporation (IDC) report in 2017, the size of the world’s information is 
increasing and would be 140 ZB by 2050 [1]. Such a huge volume of data necessitates a 
substantial scaling of the resources horizontally [2] in which the massive produced data 
can be processed in parallel on distributed machines. One of the most popular parallel 
and distributed frameworks is MapReduce introduced by Google in 2004 [3]. Hadoop 
[4] is an open-source implementation of the MapReduce for cloud computing. Each 
MapReduce job consists of two dependent phases, Map and Reduce. The user-defined 
Map and Reduce tasks are distributed independently onto multiple resources in a tree-
style network topology for parallel execution. The Shuffle phase performs an all-to-all 
remotely fetching of intermediate data from the Map phase to the Reduce phase. It 
involves intensive data communications (flows) between resources and can significantly 
delay job completion. Therefore, effective use of resources such as computation and 
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the network is a critical factor in MapReduce performance which can be significantly 
enhanced by task scheduling and flow scheduling respectively [5, 6]. A preferred task 
scheduling results in a better performance which is measured by the makespan. Moreo-
ver, in the shuffle phase, the data transmission time from a source to a destination across 
the network directly influences makespan [7].

A growing emphasis on a variety of MapReduce jobs and the inclusion of different con-
figurations of nodes in the existing cluster has led to an increased acceptance of the het-
erogeneous environment. Heterogeneity in a system is introduced due to the presence 
of resources that have different characteristics, including speed, memory space, special 
processing functionalities, etc. [8]. The considered heterogeneity includes two factors, 
(1) the processors in the network are not identical and have different computation power 
which can result in different execution times for running the same task. (2) different 
types of jobs in terms of being CPU or IO-intensive where the tasks have different input 
data sizes which can significantly affect the performance of Hadoop scheduler and limit 
the overall throughput of the system. Therefore, in a heterogeneous system with multi-
ple tasks belonging to various jobs, designing an efficient scheduling algorithm is a vital 
challenge [9–12].

HadoopMR and Hadoop YARN are two versions of MapReduce implementation that 
offer three levels of scheduling: (i) User-level, (ii) Job-level, and (iii) Task-level, as shown 
in Fig. 1.

According to the taxonomy, there are two built-in schedulers including HFS (Hadoop 
Fair Scheduler) and HCS (Hadoop Capacity Scheduler) [4, 13, 14] as user-level sched-
uling. The objective of HCS is to maximize the resource utilization and throughput in 
a multi-tenant cluster environment by applying separated queues/pools to each user 
while guarantees the minimum required capacity. However, HCS does not guarantee the 
resource efficiency that could lead to unnecessarily idle resources and inefficient sched-
uling. Therefore, HFS was proposed to provide a fair share of cluster capacity over time 
among the users. HFS is a preemptive algorithm useful in environments with different 
types of jobs. The separated security mechanisms in terms of control access are applied 
in each queue which avoids any interference of users’ jobs.

FIFO (First In First Out) and Priority schedulers are the two built-in scheduling algo-
rithms designed for scheduling of jobs. FIFO as the Hadoop scheduler schedules users’ 
jobs based on their order of submission. In FIFO, since there is only one queue for all 
users’ jobs, the preemption (priority) is not supported. Hence a long-running job makes 
delay the completion time of the other jobs. The Priority scheduler assigns the free 
resources to the job that has the fewest running tasks to ensure that the cluster is shared 
fairly between jobs. Priority scheduler allows the small jobs to finish in an optimal time 
while does not make the big jobs being starved.

The scheduling tasks of a job by considering different criteria such as performance 
(completion time), locality, network traffic, cost, etc., is the third level and fine-
grained of scheduling. There are three levels of tasks scheduling, including, Map, 
Reduce, and Speculative tasks scheduling. At the Map task scheduling level, the 
default Hadoop scheduler is based on the data locality criteria, i.e. it selects the local 
Map tasks for a given resource by inquiry the meta-data service to find the hosted 
data chunks. However, Hadoop randomly selects the Reduce tasks of the selected job 
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for scheduling on the available resource. To reach better turn-around time through 
higher parallelism, once a Map task execution is completed, the Reduce task sched-
uler starts shuffling the intermediate data.

The studies that aim at improving the parallel performance of MapReduce job either 
try to schedule only the Reduce tasks to diminish data transmission cost in the shuf-
fle phase [7, 15–17] or try to minimize the job completion time by only considering 
scheduling Map or Reduce tasks [18–23] (see “Related work” section). They usually 
focus on only the assignment of Reduce tasks with the assumption that Map sched-
uling is determined by the initial data distribution of the file system hosted on the 
MapReduce compute nodes. However, this assumption is not valid in the cloud or 
high-performance environments since the input data often resides in a remote shared 
file system such as Lustre [24] or Amazon S3 [25]. In such a setup, since all the data 
is loaded from remote locations, the scheduling of Map tasks also becomes important 
[26].

To the best of our knowledge, there are only a small number of scheduling algorithms 
considering both Map and Reduce tasks scheduling simultaneously in the literature. 
Furthermore, there is still much room for improving the performance of MapReduce in 
terms of minimizing the makespan while considering network traffic in heterogeneous 
environments. In this paper, we propose a scheduler which aims to decrease the entire 
tasks completion time (makespan) by reducing the execution time of Map and Reduce 
stage individually while considering network traffic in heterogeneous environments. The 
main contributions of this paper are as follows: 
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1.	 An improved scheduler for heterogeneous environments while almost most of 
Hadoop schedulers are designed for homogeneous environments.

2.	 A dynamic partition binder for Reduce tasks to reduce the network traffic in the 
Shuffle phase.

3.	 A two-stage Map and Reduce scheduler for improving makespan which works in 
polynomial computation time.

4.	 A power-aware selection of resources to minimize the total power consumption of 
the cluster.

The paper is organized as follows: In “Related work” section, a brief review of related 
work is presented. “Problem statement and system model” section introduces the prob-
lem statement and formulating the problem. In “Proposed solution” section, our pro-
posed scheduler is introduced. “Performance evaluation” section shows the results of 
the simulations experiments. Finally, the main results are discussed, and directions for 
future work are presented in “Conclusions” section.

Related work
A large number of studies [18–23, 27–30] have been conducted to minimize the makes-
pan of jobs and improve Hadoop performance. We classified the works into two catego-
ries: (i) Studies ignoring resource and workload heterogeneity, (ii) Studies considering 
the heterogeneity in terms of resource and workload.

First category. Studies [18, 21] have presented a Johnson-based method which aims to 
minimize the makespan of MapReduce jobs. The proposed static scheduler is inspired by 
the two-flowshop problem where the Map and Reduce execution stage is known in prior. 
In [18], a heuristic Johnson-based method is introduced where separated pools (called 
Balanced Pools) are employed to minimize the makespan of jobs of each pool. However, 
their proposed method is not optimal, and it cannot minimize the overall makespan. 
The study [21] has proposed a modified Johnson algorithm which minimizes the overall 
makespan of users’ jobs. The deficiency of the scheduler is that to achieve the minimum 
makespan, it places all types of users’ jobs in one work queue, and it shares all capacity of 
the cluster between jobs while ignoring the type of jobs and their data size.

In [19], authors have proposed an approximation algorithm for scheduling tasks to 
minimize makespan and total completion time. Authors assumed that Reduce tasks are 
non-parallelizable, whereas Map tasks are parallelizable in a homogeneous Hadoop clus-
ter. The preemption of jobs has been taken into account to achieve fairness of jobs. In 
[20], Jiang et al. have presented an online scheduler with the objective of minimization 
of makespan of MapReduce jobs. Authors have considered both preemptive and non-
preemptive Reduce tasks in a homogeneous Hadoop cluster. The proposed scheduler is 
optimal for cluster up to two nodes while the scalability and heterogeneity have not been 
considered. The proposed methods consider neither the heterogeneity of resources nor 
jobs.

Second category. In [22], the authors proposed a static task scheduler inspired by 
the bin packing problem to minimize the makespan while considering the heteroge-
neity of the cluster. In this method, first, the Reduce tasks with higher execution time 
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(Large Reduce First) and their related Map tasks are assigned to the nodes with the 
more top speed. Afterwards, the same process is repeated for other remained Map 
and Reduce tasks subsequently to minimize the makespan. To achieve a shorter 
makespan, authors have assumed that Map tasks are parallelizable and can execute on 
multiple machines.

In [23] the authors proposed a multi-objective scheduling algorithm in MapReduce-
based cloud environments. In the proposed model, the job completion time and cost 
of cloud services have been considered to minimize the makespan of tasks of a job. 
Compared to FIFO and Fair schedulers, the scheduler achieves higher tasks through-
put and is cost-effective in terms of resource usage by cloud users. The proposed 
scheduler model is designed for only one job while there are many and different jobs 
in the MapReduce cluster.

With the premise of improving Hadoop performance in terms of makespan, Yao 
et al. [27] have presented a new scheduler for a batch of MapReduce jobs. The pro-
posed schedulers use the information of requested resources, resource capacities 
and dependency between tasks which constitutes the tasks’ fitness for scheduling. 
Authors have conducted experiments under different workloads but have not consid-
ered the resource heterogeneity.

In [28] authors have considered the Map tasks scheduling problem of MapReduce 
jobs to obtain network traffic and tasks throughput optimally in the heterogeneous 
environment. The scheduler is based on the Shortest Queue and the MaxWeight pol-
icy. It can achieve the full capacity region and minimization of the expected number 
of backlogged tasks in the considered heavy-traffic regime. However, authors have not 
considered the Reduce tasks scheduling problem that is the leading cause of network 
cost in the shuffling phase.

Authors in [29] proposed a Map tasks locality-aware scheduler, TSMJS, a Time-Shar-
ing MapReduce Job Scheduler to minimize the makespan by mitigating the amount of 
intermediate data in the shuffle phase. Since for combining the records produced in the 
shuffle phase, there is a per-combiner memory reservation need, the idea is minimizing 
the non-local Map tasks on a node to ensure the least number of combiners. Authors 
have considered the Map tasks scheduling problem in the cloud environment with het-
erogeneous workload; however, they have not considered the Reduce tasks scheduling.

In [31] the authors have proposed two consolidation-based techniques to reduce 
power consumption. The two methods are based on the Best Fit Decreasing (BFD) 
approach. In the first technique, called Minimum Power BFD (MPBFD), servers with 
the lowest power consumption are selected for consolidation. In the other method, 
called the Maximum CPU Capacity BFD (MCBFD) technique, servers with the high-
est capacity of computing are chosen. The authors have determined both the upper 
and lower threshold value to avoid the violation of the SLA through migration and to 
reduce power consumption by turning the underutilized servers off, respectively.

Liaqat et al. [32] extended the Nova scheduler to propose a multi-resource based VM 
placement approach to improving application performance in terms of the central pro-
cessing unit (CPU) utilization and execution time in the heterogeneous environments. 
The authors have designed three modules, including, Compute Load (CL), Load Ana-
lyzer (LA), and Load Filter (LF) for implementing their VM placement architecture.
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Nita et al. [33] proposed a multi-objective scheduling algorithm of many independ-
ent MapReduce tasks, called, MOMTH, for big data processing in the heterogene-
ous system. The objectives of MOMTh is avoiding resource contention and having an 
optimal workload of the cluster while meeting the deadline and budget constraints.

In [15], the authors presented Hadoop-A, an acceleration framework to optimize 
Hadoop by removing the sequence between the Shuffle phase and the Reduce phase. 
Hadoop-A uses high-speed hardware called RDMA, which is based on Infini-band com-
munications, to get faster access to the output of the Map tasks by the Reduce tasks. The 
framework uses an external queuing algorithm based on the priority queue to remove 
the number of disk accesses and duplicate mergers in the Reduce phase.

A comprehensive study for makespan minimization has been conducted in [30]. 
Authors have done a systematic literature review on the Hadoop platform and investi-
gated the solutions to enhance Hadoop performance in terms of makespan and network 
traffic by introducing new and robust existing methods in the task and job scheduling. 
A survey of metaheuristic-based schedulers for MapReduce jobs and the comparative 
analysis have been provided in [34]. The schedulers such as Ant Colony Optimization 
(ACO), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), League Champi-
onship Algorithm (LCA), and BAT algorithm can find near-optimal solutions in many 
areas such as Grid, Cloud, and distributed environments for minimizing makespan of 
jobs. However, since the metaheuristic solutions take a long time to find an optimal solu-
tion due to the large solution space or non-optimal fitness function, we employed the 
greedy heuristic solution which is suitable for scheduling problem in a short time.

Problem statement and system model
Problem statement

A scheduling model consists of (i) multiple applications, (ii) a target computing environ-
ment, and (iii) one or more performance criteria for scheduling. Let’s suppose that there 
is a set of Map and Reduce tasks of different jobs in a MapReduce-based Hadoop cluster. 
The Map tasks could be executed in parallel on a set of heterogeneous resources. For the 
logical correctness of the MapReduce programming model, the Reduce tasks can start 
only once the entire Map tasks execution is completed. Considering a MapReduce job 
where the makespan is equal to the Job Completion Time (JCT), there are four options 
to minimize makespan shown in Fig. 2. Let us look at these options: 

1.	 Defining the optimal number of Map tasks.
2.	 Defining the optimal number of Reduce tasks.
3.	 Reducing the execution time of the last Map task.
4.	 Reducing the execution time of the last Reduce task.

In Hadoop-stock [4], the input dataset is divided into equal parts, called Splits. Since 
each Map task is responsible for processing one split, the number of Map tasks of a job is 
predefined by the system which is equal to the number of splits (see Eq. 1).

(1)# of Map tasks =
Input data size

Split size
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Therefore, the first option (Defining the optimal number of Map tasks) is out of our 
control and depends on the input data size and the configured split size. For example, 
if we have 1TB of the input file and the block size of the HDFS is 128MB, then num-
ber of input splits are (1024/128 =)8 input splits. Thus the number of Map tasks of 
the job is set to 8. However, reducing the block size from 128MB to 64Mb results in 
(1024/64 =)16 , corresponding to 16 Map tasks. The second alternative (the number of 
Reduce tasks) is defined dynamically after all the output partitions of all Map tasks are 
produced, i.e., the number of Reduce tasks depends on the size of the partitions. There-
fore, the optimal size of partition to be assigned to a Reduce task is system dependent, at 
least to some degree, [35]. However, there is a trade-off between performance in terms 
of improving storage performance (due to larger sequential I/O) and fault-tolerance in 
terms of the amount of computation that must be re-done when a Reduce task fails.

However, there are many solutions to define the optimal number of Map and Reduce tasks 
by defining the optimal split data size through applying the meta-heuristics and machine 
learning solutions which are discussed in the MapReduce parameter tuning research field 
which is not included in the scope of our paper. Therefore, only option 3 (Reducing the exe-
cution time of the last Map task) and 4 (Reducing the execution time of the last Reduce task) 
are targeted by TMaR, which is explained in “Proposed solution” section.

System model

We make several common assumptions in this study, given the relatively high complex-
ity of MapReduce job scheduling. The problem can be formally described as follows. 
Given a set of n different jobs J = {J1, J2, . . . , Jn} , which must be processed on m differ-
ent computing nodes N = {N1,N2, . . . ,Nm} . Each node consists of some containers, and 
each job is assigned a logical container which is physically distributed among the pro-
cessing cores of the nodes. A job is fractional which means that it can be arbitrarily split 
between the nodes (on its associated container), in other words, the parts of the same 
job can be processed on different nodes simultaneously. These parts are known as Map 
and Reduce tasks which are independent and executed in parallel. The heterogeneity has 
been modelled by assuming different runtimes of tasks on different processors. Reduce 
tasks can only be launched when all the Map tasks have been completed. Let Mj and Rj 
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Fig. 2  Minimization problem
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be the sets of Map tasks and Reduce tasks of Jj ( 1 � j � n ) where the Map tasks can pro-
duce a set of partition sizes from the set of partitions P = {P1,P2, . . . ,Pi} on their local 
disk after execution. |Mj| and |Rj| denote the number of tasks in Mj and Rj respectively 
which their summation shows the job size. The number of Map tasks Mj is defined by 
the size of input dataset Ij while the number of Reduce tasks Rj is specified in run time 
after the intermediate data are produced. Let Cj be the completion time of job Jj ; our 
goal is to minimize the makespan, i.e., the maximum finish time of all jobs, max1�j�nCj . 
As we consider only one job, then makespan is equal to the completion time of the job.

In our model, the task execution of a given application is assumed to be non-preemp-
tive, i.e. the Map or Reduce task is not interrupted (paused or killed) during its pro-
cessing [22]. Moreover, the data transfer rate (network bandwidth) between nodes of the 
cluster is stored in matrix CB of size m ∗m and the propagation delay of nodes is given in 
an m-dimensional vector L.

Proposed solution
The proposed framework is shown in Fig. 3. As seen, we simulate YARN [36] architecture 
since it optimally manages resource allocation, i.e., there is no fixed number of slots sepa-
rately allocated for Map and Reduce tasks. Therefore, unlike Hadoop-stock, TMaR does not 
statically schedule the Reduce tasks (the number of Reduce tasks are defined in run time 
after the partitions are produced) which results in better utilization of available capacity by 
Map tasks. YARN uses a double-layer resource scheduling model: (i) Resource to Jobs sched-
uling, (ii) Resource to the tasks (of a job) scheduling. In the first layer, the resource sched-
uler in ResourceManager allocates resources per-application ApplicationMasters; then in the 
second layer, ApplicationMasters will allocate containers to each task of their jobs. TMaR 
focuses on resource allocation in the second layer. How to set appropriate resource require-
ments for each job in the first layer is out of the scope of our study, and we assume it is com-
pletely determined by ResourceManager (our future work). Therefore, according to Fig. 3, 
when the jobs are submitted by the Client to the system and placed in the queue, one App-
Master is assigned to each job, and a container is allocated to the AppMaster. The container 
is a logical concept, and it is indeed physically distributed as the cores of the nodes in the sys-
tem. For example, the logical yellow container which is assigned to AppMaster2 in the first 
layer is shown distributed on the nodes in the second layer.

First, Client copies the input files into the Hadoop file system (HDFS) where the files 
are divided as splits, and they are scattered on the nodes of the cluster. Each node con-
sists of a NodeManager that reports the status of the node to the ResourceManager. 
Then, Client queries the information of the execution time of the tasks of the submitted 
job for scheduling from the Preprocessing stage and send the required information to 
the two-stage scheduler. In the first stage, TMaR schedules the Map tasks list of the job 
using the Map stage scheduler (Algorithm 1) and write the output on the local hard disk 
of each node as Map Output File (MOF). According to Fig. 4, MOF consists of a key-
range sub-partitions (partition 1, partition 2, ...).

MOFs should be assigned to the Reduce tasks of the job for processing. Since in 
TMaR the Reduce tasks are not statically scheduled, after all the sub-partitions of MOFs 
are ready, it calculates the size of a partition and determines the number of required 
Reduce tasks for each partition. Therefore, by using the Reduce tasks execution time 
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from Preprocessing stage, the Reduce tasks are scheduled using Reduce stage scheduler 
(Algorithm 3 and Algorithm 4).

Preprocessing

In the context of static scheduling, we need to know prior to the execution time of tasks 
of a job, i.e. the Map task and Reduce task for making the decision. According to [38], 
authors conducted a comprehensive MapReduce job profiling by executing a smaller 
input dataset and observed the execution time of all phases of the job, i.e. initialization, 
Map, shuffle and Reduce. We name this initial calculation stage as Preprocessing stage 
and store the obtained information into the Map_Matrix and Reduce_Matrix , respec-
tively. We will use the Matrixes as the input of the Map and Reduce stage scheduling 
algorithm, respectively. We note that, since under the mixture of workload, the size of 
produced intermediate data, i.e. the Map output data partition size of a job is not a good 
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indicator of the execution time of its Reduce tasks, we did profiling both on the CPU-
intensive and IO-intensive benchmarks to better estimate the Reduce task execution 
time. This considering is required as in the Reduce stage scheduler, for defining the par-
tition placement on heterogeneous resources, we need the Reduce task execution time 
information.

Map stage scheduler: Algorithm 1

According to [39], Map Selectivity is defined as the Map output compression ratio, i.e. 
the average number of records output by Map tasks per input record. All Map tasks of 
a job possess the same Map selectivity [7] i.e., they process the same amount of data 
and do the same functionality. Then, the only effective criterion on Map task execution 
time would be the node speed. Moreover, all Map tasks of a particular job have the same 
execution time on a specific machine. Inspired by the original algorithm proposed by 
Topcuoglu et al. [40] and with the Map tasks execution time information in Preprocess-
ing phase, our Map stage scheduler places the Map tasks such that the finish time of 
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each task is minimized (see Algorithm 1, line5). After the task assignment, the status of 
the cores in matrix CA is updated (line 6).

In the situations where there is more than one candidate that satisfies the time min-
imization, we select the resource with less power consumption after task assignment. 
To do this, it is enough to obtain the power consumption of cluster after assigning 
the task to the host which has been recognized as “best host (min)” from the previous 
selection (line 9), and compare it with the power consumption of the host with the 
same condition (in terms of time minimization) as ”new host” (line 10). Then, select 
the one with a lower value. We call this Algorithm TMaR+ , which is an extension of 
TMaR in terms of power improvement by importing the lines 6–11 in the Map Sched-
uler (Algorithm 2).

CPC function returns the total cluster power consumption, and the Pow function 
returns the current power usage of a host. However, our system is not DVFS-enabled 
(CPUs can be operated at different speeds at runtime) and when a task is running on a 
resource, its execution is completed at full capacity of the resource. But, one can apply 
the DVFS technology for better power saving, and it can be implemented subject to the 
platform. Therefore, we define the general linear power model, according to Eq. 2.

Where PAS is the power consumption after task assignment, hstatic is the static power 
of host, hmax is the maximum host power consumption, and U(t) is the CPU utiliza-
tion level at time t. Therefore, the resource with the lowest cost in terms of power con-
sumption is prioritized. At line 7, the Plist is a list of the proper candidates which are 
homogeneous in terms of makespan minimization but, heterogeneous in terms of power 
consumption.

It is worth mentioning that the cluster is more load-balanced compared to the 
situation where there is no priority metric to select from the proper candidates. We 
illustrate this problem, according to Fig. 5. Let suppose we have eight homogeneous 

(2)PAS = hstatic + (hmax − hstatic) ∗U(t)



Page 12 of 26Maleki et al. Hum. Cent. Comput. Inf. Sci.           (2020) 10:42 

tasks and their execution time on the four heterogeneous resources with their power 
consumption per 1 unit task processing is available in Map_Matrix . The Map_Matrix 
looks like the Table 1.

As shown in Fig.  5, when we consider power in the same condition of candidates, 
the R4 is turned on as compared to the R1 , it consumes less power for processing 
T8(5× 50 vs 1× 400) . Also, there is a load balancing between the resources while the 
makespan remains the same (makespan=5). Therefore, it is true that the objective of the 
solution is to minimize the makespan of tasks, such implicit improvement in terms of 
power consumption does not contradict the objective.

Reduce stage scheduler: Algorithm 3

In Hadoop-stock, the shuffle phase will start once the produced Map outputs meet a pre-
defined threshold. The threshold is defined as a percentage of Mappers that have finished 
their execution. Since TMaR’s goal is to define the number of Reducers dynamically sub-
ject to the partition size, it schedules Reduce tasks when all Map outputs are produced. 
A partition size is calculated by aggregating the related sub-partitions scattered on the 
nodes of the cluster. Therefore, TMaR requires that Reduce tasks are launched on the 
node that hold the corresponding shuffled sub-partitions. To this end, TMaR breaks the 
static binding of Reduce tasks in job initialization and provides dynamic Reduce parti-
tion binding. TMaR employs Reduce Partition Binding (PRB) approach that assigns par-
titions to Reduce tasks at the time of dispatching. It determines the number of Reducers 
based on the hosted partition size and spawns them in run-time to be assigned to the 
partition. Such binding reduces the network traffic in the Shuffle phase and also guaran-
tees a data local Reduce tasks scheduling.

After determining how Reducers are assigned to a partition, we should first decide 
on which node the reducers finish time will be minimized. According to Algorithm 3, 

Fig. 5  Map Scheduling using TMaR
+ [37]

Table 1  Example of task execution time on heterogeneous resources

Resource 1/400 W (s) Resource 2/300 W (s) Resource 3/150 W (s) Resource 
4/50 W (s)

T1 1 2 4 5

T2 1 2 4 5

T3 1 2 4 5

T4 1 2 4 5

T5 1 2 4 5

T6 1 2 4 5

T7 1 2 4 5

T8 1 2 4 5
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we sort the partitions in descending order by size (line 3). Next, for each partition 
(line 4), we calculate the Reducers finish time using PRB algorithm and schedule the 
Reducers on the node that will return the minimum finish time (line 6) (see Algo-
rithm  4). To achieve this goal, by knowing the Reduce tasks start time and Reduce 
tasks execution time, we can define the Reduce tasks finish time according to Eq. 3.

•	 Reducers execution time: We can simply calculate the Reducers execution time 
related to a partition, since in the Preprocessing stage we have obtained the Reduce 
tasks execution time on each node of the cluster and maintain the information in 
Reduce_Matrix.

•	 Reducers start time: For calculating Reducers start time, we only need to find the 
first Reduce start time as all other Reducers will execute on the same node in parallel 
on the free cores or waited in the resource queue until it becomes free. We calculate 
Reducers start time according to Eq. 4: 

 It means that the Reducers start time depends on the maximum time of two factors: 
(a) Time elapsed to transfer the sub-partitions related to a partition from other nodes 
to a specific node; (b) Time at which the resource will be available. 

(a)	 Partition transfer time: We calculate transfer time of data between two nodes 
by Eq. 5: 

 where the La,b is the propagation delay between two resources Ca and Cb . 
Notably, since for starting the Reducers execution time the total data related 
to a key-range is required, the maximum time required for transferring all the 
sub-partitions of a partition to a resource are taken into account.

(b)	 Resource available time: After all Map outputs are ready and the resources are 
load-free, we can decide on which resource the Reducers should be scheduled. 
Each time by placing each partition on a proper resource i.e., its related Reduc-
ers finish time, we update the available time of the resources (line 7).

(3)Reducers Finish Time = Reducers Start Time + Reducers Execution Time.

(4)
Reducers Start Time = Max(Resource Available Time, Partition Transfer Time).

(5)Transfer Timea,b = La,b +
Partition Size

|BW |a,b
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The variables used in the Algorithms are presented in Table 2.

Performance evaluation
Simulation setup

To achieve an efficient simulation that addresses various scenarios, the choice of a 
robust simulator is essential. Cloudsim [41] is an event-driven and java-based simula-
tion environment which supports modeling and simulation of different resource pro-
visioning schemes and workload descriptions. CloudSim enables the consideration of 
MapReduce as well as physical data simulation and modeling of the latency of physi-
cal and virtual machines, networks, and data storage devices in a large-scale distributed 
environment [42]. According to [29] many MapReduce papers have evaluated their work 
through simulation [22], either using Cloudsim [43, 44] or its derivations CloudsimRT 
[42], CloudsimEX [45], and CloudsimMR [46]. We developed TMaR by extending the 
CloudSim and designed completely all the required classes to implement TMaR. The 
fundamental classes of TMaR are TaskDispatcher, TaskSchedule, KeyValuePair, JobSpec, 
MapTaskInfo, PartirionInfo, ReduceTaskInfo, and NetworkInfo. We have implemented 
TMaR using Java (JDK 1.8) on a laptop with Windows 10 Operating system at 2.7 GHz 
quad core and 16 GB main memory running a 64 bit version of Windows 2018. The effi-
cacy of TMaR, is compared to Hadoop-stock and Hadoop-A [15]. We chose Hadoop-
stock since it considers both Map and Reduce tasks scheduling, runs in polynomial time, 
and has been used as baseline in many related work [14, 18–20, 22, 23].

Table 2  Algorithm variables

Variable Description

Resmin Resource on which the execution time of Reduce Tasks is minimized

RF Reduce tasks finish time

RS Reduce task start time

RE Execution time of Reduce tasks

min Temporary variable to hold minimum of Reduce tasks finish time related to a parti-
tion hosted on a node

NR Number of Reduce tasks

NRes Number of resources of the cluster

Rsplit System parameter which determines the number of Reducers required for a partition
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Environment and workload description

To evaluate TMaR, since the objective is makespan minimization while considering 
the network traffic, we consider both the heterogeneity of workload (different jobs) and 
environment. The jobs are heterogeneous in terms of CPU/IO-intensive and shuffle-
light/heavy and the environment is heterogeneous in terms of the processing power of 
hosts, represented by MIPS. For the simulations in homogeneous and heterogeneous 
environments, the following settings were adopted respectively: each host in a homoge-
neous environment is an Intel Xeon@2.4 GHz processor and each host in heterogeneous 
environments consists of the following Intel Xeon types in a round-robin distribution: 
1.2 GHz, 1.7 GHz, 2.4 GHz, 2.7 GHz, 3.6 GHz. We chose the processing power of homo-
geneous system of 2.4 GHz since it is an average computing power compared to the het-
erogeneous system resources and results in a fair comparison conditions.

Besides, we practically assess the scalability of TMaR, by different data sizes varying 
from 1GB to 10GB in three different sizes of environment i.e. small, medium, and large. 
For small environments, we considered that they have 10 hosts, in medium sized envi-
ronments, these numbers are 20 hosts and in large environments these values are 30 
hosts. In each scenario, we create a YARN environment with the homogeneous and het-
erogeneous hosts and all hosts were interconnected by a Gigabit Ethernet (125 MBps). 
Since we focus on CPU utilization in this work, we assume each YARN resource con-
tainer has unlimited memory space.

According to Eq. 1, the number of Map tasks is determined by the input file size and 
the HDFS block size, i.e. 128MB for all the scenarios. If the intermediate data size is 
large, then more data needs to be shuffled from Map tasks to Reduce tasks. We call 
such jobs shuffle-heavy. Shuffle-heavy applications tend to use more networking and 
IO resources. Therefore, according to [7] we generate the Map intermediate data using 
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uniform distribution between [10, 30] and [30–300] Gigabyte as shuffle-light job and 
shuffle-heavy job, respectively. Since the Map output data size is an application-specific 
parameter and also depends to input data size, we define the shuffle degree of jobs based 
on the MapSelectivity (in short, MS) that MS = 2 and MS = 0.5 represents the shuf-
fle-heavy and shuffle-light Map output data respectively. For example, by applying MS 
= 2, for a shuffle-heavy job with 10GB dataset, the 20GB intermediate data is gener-
ated by 800 Map tasks. The selected applications exhibit different processing patterns 
and allow for a detailed analysis on a diverse set of MapReduce workloads. For example, 
WordCount and TeraSort are shuffle-heavy while Grep and K-means have a significantly 
reduced data size after the Map stage and therefore belong to the shuffle-light category. 
In addition, WordCount and KMeans are computation-intensive because their Map 
phase processing time is orders of magnitude higher than other phases. The benchmark 
characteristics and scenarios we use in these experiments are summarized in Tables 3 
and 4, respectively.

Performance metrics

We measure the following two parameters as evaluation criteria: 

1.	 Makespan: The total elapsed time required to execute the entire MapRe-
duce job is called makespan. The makespan is calculated as follows: Makes-
pan = Max∀ReduceTask∈NR

 { RF }. Where RF , the Reduce task finish time is achieved 
using RF = RS + RE (Eq. 3).

2.	 Intermediate data processing time: It is the time required for remotely fetch the data 
produced by Map tasks and process it on the intended node.

3.	 Power consumption: The total power consumption of cluster when we apply TMaR+.

Table 3  Application characteristics

Job Description CPU/IO-intensive Shuffle-light/heavy

Wordcount Counts the occurrence of each word in the input data CPU-intensive Shuffle-heavy

K-means A clustering analysis algorithm for multi-dimensional 
numerical samples in data mining

CPU-intensive Shuffle-light

TeraSort A popular benchmark to sort one terabyte of randomly 
distributed data

IO-intensive Shuffle-heavy

Grep Counts the number of occurrences of strings matching 
the target in a text file

IO-intensive Shuffle-light

Table 4  Scenario description

Workload type Input data size small, 
medium, large

# of Map Tasks

Scenario 1 Job is CPU-intensive and the produced intermediate 
data is high in the range of [30, 300] GB

<1 GB, 3 GB, 5 GB, 10 GB> <8, 24, 40, 80>

Scenario 2 Job is CPU-intensive and the produced intermediate 
data is low in the range of [10, 30] GB

<1 GB, 3 GB, 5 GB, 10 GB> <8, 24, 40, 80>

Scenario 3 Job is IO-intensive and the produced intermediate data 
is high in the range of [30, 300] GB

<1 GB, 3 GB, 5 GB, 10 GB> <8, 24, 40, 80>

Scenario 4 Job is IO-intensive and the produced intermediate data 
is low in the range of [10, 30] GB

<1 GB, 3 GB, 5 GB, 10 GB> <8, 24, 40, 80>



Page 17 of 26Maleki et al. Hum. Cent. Comput. Inf. Sci.           (2020) 10:42 	

The overview of our simulation design is illustrated in Fig. 6.

Results analysis

Makespan

We analyze the experiments in two parts from two perspectives to consider the TMaR 
performance: (i) TMaR is evaluated under different cluster and dataset size in both 
homogeneous and heterogeneous environments with different kind of jobs (scalability), 
(ii) TMaR is compared to Hadoop-stock and Hadoop-A in terms of makespan and net-
work traffic.

Part 1: Figures  7, 8, 9, 10 represent the total job execution time for Wordcount, 
Kmeans, Sort, and Grep in homogeneous and heterogeneous systems, respectively. 

(a)	 WordCount: According to the Fig.  7a, TMaR provides less execution time by 
increasing the number of resources in the Wordcount application for all different 
input sizes. TMaR also achieves more performance for big amount of input data 
sizes by increasing the number of resources. The performance gain in large environ-
ment compared to small environment with 3 GB and 10 GB input size are equal to 
+ 2.5X and + 1.5X, respectively. We should mention that in homogeneous environ-
ment with 1GB dataset, since the number of Map tasks are less than the resources, 

Fig. 6  Simulation design
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Fig. 7  a Wordcount execution time by varying data size in homogeneous environment. b Wordcount 
execution time by varying data size in heterogeneous environment
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there is no performance in all cluster sizes. In Fig. 7b, the performance gain is more 
considerable in the heterogeneous environment and makespan is about + 1.2X less 
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Fig. 8  a Kmeans execution time by varying data size in homogeneous environment. b Kmeans execution 
time by varying data size in heterogeneous environment
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Fig. 9  a Sort execution time by varying data size in homogeneous environment. b Sort execution time by 
varying data size in heterogeneous environment
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Fig. 10  a Grep execution time by varying data size in homogeneous environment. b Grep execution time by 
varying data size in heterogeneous environment
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compared to homogeneous system. The performance gain is +1.4X and + 1.6X 
in large environment compared to small environment with 1 GB and 10 GB input 
size, respectively. The reason is that in heterogeneous environment, with greedy 
behavior of TMaR, the fastest resources are selected in each decision making which 
makes earlier the finish time of Map tasks and subsequently results in less finish 
time of Reduce tasks and overall makespan.

(b)	 K-means: K-means is divided into two main phases, the first phase is the iteration 
phase and the second phase is the clustering phase. In the iteration phase, the per-
formance is a CPU-bound, which means the performance will increase if there is an 
increase in processing power such as an increase in the number of resources. This is 
perceptible in Fig. 8a, b with 2X and 2.11X performance gain in large environment 
compared to small environment with 10 GB input size in homogeneous and het-
erogeneous environment, respectively. However, the performance gain of hetero-
geneous system compared to homogeneous system is not considerable (about 6%). 
The reason is that in the clustering phase of K-means, the performance is IO-bound 
which means that the performance is limited and bounded by IO communication 
within a cluster. Since K-means is a shuffle-light job i.e. the produced intermedi-
ate partition sizes is small, the network traffic overhead in all cases is almost the 
same and low in both environments. It therefore, indicates that the slightly higher 
makespan of K-means in homogeneous environment compared to heterogeneous 
environment is due to its computational degree.

(c)	 Sort: As shown in Fig.  9a, TMaR provides less execution time by increasing the 
number of resources in the Sort application for all different input sizes in homo-
geneous environment. The performance gain in homogeneous large environment 
compared to small environment with 3 GB and 10 GB input size are equal to + 
1.7X and + 1.5X, respectively. Fig. 9b shows that the performance in heterogeneous 
environment is almost the same with all input data size and only when the input 
data is large (10GB), it reaches to a better performance, 1.2X and 1.3X in small and 
large environment, respectively, compared to homogeneous environment.

(d)	 Grep: Grep application has the minimum run time among other applications, + 
6.1X, + 35.4X, and +2X faster compared to Wordcount, K-means, and Sort bench-
marks in large heterogeneous environment, respectively (Fig.  10b). The reason is 
that Grep is an IO-intensive job with light shuffling which based on TMaR, makes 
smaller number of Reduce tasks for processing the produced partitions and conse-
quently less makespan. Furthermore, the performance gain of heterogeneous envi-
ronment compared to homogeneous environment with 10GB input size in small, 
medium, and large environment are equal to + 1.2X, + 1.3X, and + 1.2X, respec-
tively.

Part 2: For comprehensive performance analysis of TMaR, we use the benchmarks 
including, WordCount, Sort, and Grep and consider the makespan by increasing the 
number of Map tasks from 160 to 200, 400, 900, 1600, 2200, 2400, and 2800, respec-
tively. We run each simulation ten times and report the average value to show the confi-
dence of the results. The deviation of results where the random intermediate data size is 
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generated is negligible for the jobs Grep and K-means. Besides, for the Wordcount and 
Sort jobs, the deviation is less than 1%. We also compare TMaR with Hadoop− stock 
and Hadoop− A , respectively. To simulate Hadoop-A, we set much higher bandwidth 
between the nodes and implement the Merge sort algorithm in the shuffle phase. Fig-
ure 11a, b show the performance comparison between Hadoop-stock, Hadoop-A, and 
TMaR where the Y-axis shows the execution time and the X-axis indicates the number 
of Map tasks.

Figure 11a shows the execution time of multiple tasks using Hadoop-stock, Hadoop-
A, and TMaR in a heterogeneous environment where the different sizes of Wordcount 
jobs are applied. To find a correlation between workload size and the execution time, 
we chose to present a large volume of tasks. As seen, the execution time is reasonably 
stable with the increase in the number of tasks to be executed by the schedulers, and 
the completion time of the overall processing is increased. The Hadoop-stock slightly 
degrades the performance because it is not resource-aware and does not consider the 
performance of nodes. Hadoop-stock selects Map tasks based on the data locality and in 
this case, if the head-on-the-line Map task is not local, it would be placed randomly on 
one of the resources of the cluster and results in worse time. The Hadoop-A and TMaR 
exhibit better performance (on average 29%) compared to the Hadoop-stock scheduler. 
As we can see, TMaR achieves a bit better level of performance compared to Hadoop-A. 
Although Hadoop-A can accelerate the execution time of shuffle-heavy jobs by its fast 
shuffling, however, it poses extra delay in shuffling for the building of the priority queue. 
Besides, Hadoop-A does not consider the performance of resources while scheduling 
the Map tasks, and since the Wordcount is a CPU-intensive job, it cannot benefit from 
the higher speed resources. In contrast, TMaR schedules Map tasks by considering the 
performance of resources which considerably reduces the makespan of Map tasks. Also, 
TMaR schedules Reduce tasks based on the proposed PRB algorithm, which reduces the 
network data movement and consequently, the shuffle phase. However, this reduction 
in network movement and data locality in the side of Reducers, make the makespan of 
Reduce tasks increases.

According to Fig.  11b, Sort benchmark benefits from both TMaR and Hadoop-A. 
Compared to Hadoop-stock, TMaR achieves on average 36% higher performance. The 
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Fig. 11  Execution Time using the a Wordcount, b Sort
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reason is that TMaR considers the placement of Reduce tasks regarding the place-
ment of the Map partitions while in Hadoop-stock, the Reduce tasks are randomly 
deployed, and the heterogeneity of resources is not taken into account. Compared 
to Hadoop-A, TMaR achieves less performance (on average 6%) when the num-
ber of tasks increases. The reason is that since the Sort job is IO-intensive, it pro-
duces an extensive volume data in the middle stage, i.e., network. TMaR can reduce 
the network traffic by the PRB partition placement but it suffers when the number 
of required Reducers responsible for processing the partition is large. However, the 
amount of difference between the two line charts tends to decrease with each step of 
increasing tasks.

Figure  12a, b shows the detailed performance of each stage in TMaR against 
Hadoop-stock and Hadoop-A. Hadoop-stock is already good enough at overlap-
ping the communication (shuffle phase) with computation (Map stage) since it fol-
lows the slow-start mechanism where shuffling starts when only 5% of Map tasks 
are completed. However, the shuffle traffic is considerably high due to the significant 
volume of data that is transferred across the network towards the randomly sched-
uled Reduce tasks, which consequently results in repetitive merges and disk accesses. 
After performing the rest of the shuffling (the small grey part which is about 4%), the 
Reduce phase starts, which takes 30% of the time to complete. In Hadoop-A, several 
Maps and Reduces are concurrently running on each node to overlap computation 
and data transfer. The interleaved Map, Shuffle, and Reduce phase forms the major 
part of the time (90%) by overlaying the Map, shuffle, and Reduce phase using the 
priority queue and the high-performance network resources. However, despite start-
ing the shuffling along with Map, the performance of Hadoop-A is less than TMaR. 
This is because of the asynchronous Map and Reduce scheme where TMaR starts the 
shuffle phase after all Maps are completed. So, here the complete resources are in the 
disposal to the Map tasks which fastens the Map execution while in Hadoop-stock 
and Hadoop-A, the Map tasks and Reduce tasks will compete for the resources. In 
the shuffle phase, TMaR schedules the partitions using the data locality-based parti-
tion placement algorithm and mitigates the Map and shuffle stage on average by 27% 
and 20% compared to Hadoop-stock and Hadoop-A, respectively. The asynchronous 
Map and Reduce scheme makes a trade-off between improving the data locality along 
with fair distribution of input data size for Reducers (achieved by PRB algorithm) and 
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concurrent MapReduce, i.e., concurrent execution of Map phase and Reduce phase. 
These results adequately demonstrate that TMaR is able to efficiently accelerate 
Wordcount, Sort, and Grep job execution on average 29%, 36%, and 14%, respectively, 
meanwhile achieves competent scalability for large-scale data processing.

According to [33], we have conducted a complex experiment where four jobs are run-
ning with different input sizes in the heterogeneous environment to consider the sched-
uling behavior of TMaR in presence of multi jobs. The jobs including, one Wordcount 
job with 20GB, two Sort jobs with 5GB, and one Grep job each with 5 GB input data, 
respectively. Figure 13a, b, c presents the start time, completion time, and time duration 
for all scheduled tasks. We can see that TMaR can complete the jobs faster compared to 
Hadoop-stock and Hadoop-A.

Intermediate data size

Figure 14 plots the results of job completion time of our scheduler and others. For the 
shuffle-light jobs such as K-means and Grep in which the intermediate data is small, the 
shuffle delay is negligible. Therefore, to understand the performance of the schedulers 
under different intermediate data size, we measured the job completion time with inter-
mediate data size ranging from 30 GB to 150 GB using Sort benchmark. Figure 14 shows 
that the job completion time of all three approaches scales linearly with the intermediate 
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data size. The job completion time of TMaR is consistently (36%) less than Hadoop-stock 
scheduler, where the Reduce tasks are statically scheduled and result in prolonging the 
shuffle/network phase. However, if the intermediate data size gets higher than 300GB, 
the job benefits little more from Hadoop-A compared to TMaR. The time complex-
ity of TMaR is O(n×m) , where n and m represent the number of tasks and resources, 
respectively.

Power comparison

For measuring the power consumption of cluster, we compare TMaR with TMaR+ 
in a small, medium, and large-scale cluster with the homogeneous and heterogene-
ous resources in terms of processing capacity and power consumption. We consider 
10, 25, and 30 resources with the power consumption in range of {350, 300, 250, 150} 
Watt in a round robin distribution. We generate 5GB, 6.5GB, and 9.5GB input data with 
40, 50, and 76 Map tasks, respectively and conduct the experiments with benchmark 
Wordcount.

Table 5 shows the reduction in power consumption by applying TMaR+ . The results 
show that TMaR+ can improve the power consumption of cluster in all scale of hetero-
geneous systems. besides, the power consumption in homogeneous environment com-
pared to heterogeneous environment is considerable especially in small scale Hadoop 
environment. However, since the main objective is makespan minimization, in the 
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Fig. 14  Impact of intermediate data size on job completion time

Table 5  Comparison between TMaR and TMaR
+ in terms of power consumption

Scenario TMaR/KW TMaR
+/KW

Small homo 79.5 79.5

Small hetero 68.35 59.85

Medium homo 88.12 88.12

Medium hetero 85.75 82

Large homo 132.5 132.5

Large hetero 125.5 115
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homogeneous environment there is any change (improvement) by TMaR+ compared to 
TMaR. The percentage of power improvement in TMaR+ compared to TMaR is 12.5%, 
5%, and 8% in small, medium, and large heterogeneous cluster, respectively.

Conclusions
In this paper, we presented a two-stage MapReduce task scheduler, named TMaR which 
enhances Hadoop performance in terms of makespan. The primary goal of our scheduler 
is to reduce the makespan of the overall tasks of MapReduce jobs while considering net-
work traffic in the shuffle phase. By accelerating the Map tasks finish time in Map stage, 
and the proposed partition placement in shuffling, TMaR reduces the Reduce tasks fin-
ish time. Since the Reduce tasks are not prescheduled and the number of Reduce tasks is 
dependent on the size of partitions, this approach mitigates the resource waste. Moreo-
ver, in Hadoop, the shuffle time depends on the location of prescheduled Reduce tasks 
however, in TMaR, since the Reduce task-partition binding is dynamically performed 
at runtime based on the partition placement, the shuffling time is decreased. TMaR+ is 
an extension of TMaR that improves total power consumption of cluster and reduces 
it up to 12%. TMaR is suitable for the dashboard reporting where the independent jobs 
are specified individually while the final result of all the jobs (tasks makespan) is the key 
concern. The experimental results demonstrated that TMaR improves performance in 
terms of makespan under different workloads. TMaR is power efficient since it selects 
the resources with lower power consumption while this decision does not contradict 
with the objective i.e. makespan. TMaR is not optimal but it outperforms the Hadoop-
stock scheduler and Hadoop-A in terms of makespan and network traffic.

In Hadoop systems, the latency occurs only because of the nature of the MapRe-
duce-based execution, where it produces lots of intermediate data. Thus, much data is 
exchanged between nodes that cause huge disk IO latency. TMaR has implicitly consid-
ered this latency by aggregating partitions that belonged to the Reduce tasks on a speci-
fied node, called, Partition-Reducer Binder (PRB). The PRB goal is to reduce the network 
traffic by preventing the unnecessary data movements between nodes which results in a 
reduction of disk IO latency. The Apache Spark is yet another batch processing system 
but it is relatively faster than Hadoop MapReduce since it caches much of the input data 
on memory by RDD and keeps intermediate data in memory itself and eventually writes 
the data to disk upon completion. We will implement TMaR in Spark, as our future plan, 
to investigate the disk IO and fault-tolerant factors. Furthermore, to improve the par-
allelism of Map and Reduce tasks, we intend to estimate earlier the partition sizes in 
advance by estimating intermediate data using Map selectivity. We also plan to propose 
a multi-objective optimization model which considers a trade-off between system cost 
in terms of energy usage and the job completion time.
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