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Introduction
Style transfer has received more and more attention in the area of image processing. Lit-
erally, it means using certain methods to change the style of original images. Then with 
stylized generations, we can make many interesting applications, such as colorization 
[1], young to old [2]. When looking backing on its development history, we can conclude 
that most of them following such pipeline:

As demonstrated in Fig. 1, assuming we are expected to transfer the style of original 
input X into that of Y:

•	 Firstly, X is feed into a feature extractor, which help us access to its feature space (or 
latent space)

•	 Then we also input the target Y into the same extractor. But differ from that from X, 
we see Y’s feature space as a set of its style attributes, controlling the “destination” of 
style transformation.

•	 Having absorbing style information from Y (with mathematical operation), the mixed 
feature set would be input into a generative model to produce the generations.

Abstract 

With recent advances in deep learning research, generative models have achieved 
great achievements and play an increasingly important role in current industrial 
applications. At the same time, technologies derived from generative methods are also 
under a wide discussion with researches, such as style transfer, image synthesis and so 
on. In this work, we treat generative methods as a possible solution to medical image 
augmentation. We proposed a context-aware generative framework, which can suc‑
cessfully change the gray scale of CT scans but almost without any semantic loss. By 
producing target images that with specific style / distribution, we greatly increased the 
robustness of segmentation model after adding generations into training set. Besides, 
we improved 2– 4% pixel segmentation accuracy over original U-NET in terms of spine 
segmentation. Lastly, we compared generations produced by networks when using 
different feature extractors (Vgg, ResNet and DenseNet) and made a detailed analysis 
on their performances over style transfer.

Keywords:  Medical Image, Contextual transfer, Deep learning, Segmentation

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Xu et al. Hum. Cent. Comput. Inf. Sci.           (2020) 10:46  
https://doi.org/10.1186/s13673-020-00251-9

*Correspondence:   
bsshin@inha.ac.kr 
Department of Electrical 
and Computer Engineering, 
Inha University, 100 Inha‑ro, 
Michuhol‑gu, Incheon 22212, 
Korea

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-020-00251-9&domain=pdf


Page 2 of 16Xu et al. Hum. Cent. Comput. Inf. Sci.           (2020) 10:46 

Despite so many research and studies have been put in this area, there are three points 
should be noted: (1) The choice of feature extractor, whether the network you use can 
totally preserve contents of X, if not, it can be predicted that the final output would be a 
little different from X in terms of semantics. (2) The way when extracting style attributes 
from Y. Mathematically speaking, all information extracted from images with network 
is a set of vectors, the problem is how to quantitative the “style” attributes from com-
plicated signal set. (3) The generative method. A good generative can not only improve 
the quality of generations but also bring better industrial prospective. In this section, 
we would detailly discussion possible solutions to challenges of research of style transfer 
facing.

Motivated by developments of deep learning advances, great progresses have been 
achieved by applying AI-based techniques. With studies of network architectures, there 
are more and more encoder-like models used to hele people access, understand, even 
control the feature space of input signal. Recent years, models like VGG, ResNet [3], 
DenseNet [4] are preferred by many studies [5–7]. On the face of it, encoder-like archi-
tectures may perform better in term of feature extraction and all research mentioned 
above originate from studies of object detection. We do not talk about their perfor-
mances in practical style transfer tasks here but note this trend deserving focus. Differ 
from detection tasks, transformation effects (quality of generations) and semantic pres-
ervation should be given top priority in current relevant research.

Apart from the choice of feature extractor, the way of learning style information dur-
ing transformation is also received great attention. Learning from adapted loss function 
seems a potential solution, Gatys [8]. etc. introduced a layer-wise style loss, they pro-
vided a layer list where saved general style information, trying to learning “style” attrib-
ute from loss function. On the hand other hand, Huang [9] etc. attempted to acquire 
“style” by operating batch normalization. Both types of research achieved state-of-art 
transformation effects, considering almost all studies learning “style” from network, the 
only point is that they have different understanding of feature spaces. But it is worth not-
ing that we have consider about the flexibility of solution. It means the speed of process-
ing should be attached with great importance and the case where multiple style learning 
also deserves attention.

We mentioned that deep learning greatly pushed the development of genera-
tive models, especially the appearance of generative adversarial network (GAN). 

Fig. 1  General structure of style-transfer model
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Researches originated from this technique have been preferred recent years, like 
CycleGAN [10], UNIT [11]. As shown in Fig.  2, we provide a general structure of 
GAN-based model, they try to produce final outputs by the adversarial process of the 
generator and discriminator network. It is true that the quality of generations can be 
improved by adversarial GAN. But problems of such frameworks are also obvious: 
long training process and extra computational resource brought by discriminator, 
also, the difficulty of multi-style transformation should be taken into onsideration.

All introductions on current solutions to style transfer are targeting on general 
images. At present time, applications of this kind of research are also popular with 
medical image analysis, such as visualization (CT to MRI), diagnosis classification 
and so on. With better-quality of generations, doctors would make a clearer under-
standing of patients’ condition. But unlike those general ones, preventing context loss 
should be put at the first place, even a little semantic loss of medical images may result 
incorrect diagnosis. What’s more, there are much more low-resolution but important 
signals existing in medical images, the preservation of which greatly increase the dif-
ficulty of transformation.

In this paper, we would focus on applications of style transfer for medical images. 
Relevant works about style transfer and medical image processing would be intro-
duced in section II. Then in section III, we propose a context-aware framework for 
medical image processing, which based on the advances of style transfer. Unlike 
GAN-based research [12–16], we followed a traditional generative idea which can 
help avoid unnecessary training costs. To maintain semantics of input as much as 
possible, we introduced a context-aware loss when training. Besides, to accelerate 
the speed of processing, the model is designed to learn style by batch normalization 
operation instead of loss learning, enabling the entire model applicable for massive 
production. In section IV, we designed a two-part experiment, one for testing the 
quality of generations while another for organ segmentation after adding outputs into 
training set. Targeting evaluating the performance of feature preservation, we experi-
mented VGG19, DenseNet and ResNet respectively. Last but not least, we concluded 
that the proposed framework can produce high-quality of medical images. Apart 
from it, compared with existing style transfer methods, the proposed framework can 
improve 2 ~ 4% segmentation accuracy of U-NET [17], the highest among current 
research.

Fig. 2  General style-transfer models with GAN
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Contributions we made in this paper are as follows:

•	 Following traditional generative idea, we proposed a style-transfer model for medi-
cal images. To prevent possible context loss, we design a context-aware loss [18] to 
enforce the semantic preservation in transformation process.

•	 Our model learns target style attributes with introduced Adain [9] (Adaptive Instance 
Normalization), which enables the model can absorb “style” from single target input 
and learn multiple styles at the same time.

•	 Organ (spine) segmentation results [17] showed that our framework largely 
improved the pixel accuracy after adding outputs into training.

•	 We made a detailed analysis on current feature extractors in terms of their perfor-
mance over context maintenance, then we concluded that VGG19 [18] would be the 
best choice for medical image style transfer.

Related work
In this section, we focus on advanced works about style transfer and introduce its appli-
cation in medical image analysis:

Style transfer

Style transfer means change the style of given images into another with certain methods. 
Since Gatys [8] etc. introduced their transformation framework based on convolutional 
network, using deep learning techniques seem a trend in this area. Similar to image syn-
thesis, current research tends to treat style information as a factor which is independent 
from contexts. Under such circumstances, the entire transformation job would become 
an attribute-learning task, aiming to learn target “style” attributes.

Assuming images as a combination of context and style codes, Gatys learned style 
information by training. With pre-visualization intermediate results, they selected pos-
sible layers which totally preserve context and style information. In this way, the whole 
training loss would be divided into two parts: context loss and style loss. With pre-
recorded layer names, Gatys [8]. adapted original one-time loss into a layer-wise one and 
researchers can control the transformation effects by adjusting the weight of style loss. 
Such advanced research greatly inspired other studies [9, 19]. Many similar works have 
been introduced, at the same time, the rapid development of network architecture and 
training techniques, people began to apply the idea of “transformation” to other tasks, 
such as colorization [1], data augmentation [15], resolution improvement [20].

Facing the challenge from industrial application, original transformation strategy is 
complained for long training time and limits. Many unique solutions have been intro-
duced [9, 19]. Actually, it is almost impossible to enable “style” information a single unit, 
being independent from contexts. Researchers can only simulate “style” vectors and then 
quantify them with certain mathematical operations.

Inspired by the idea of batch normalization, Huang introduced an adaptive instance 
normalization layer, which enable feature codes to absorb extra style information by 
normalization. They performed style transfer inside original feature space, shifting and 
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matching target style codes in a channel wise way [9, 21]. Huang’s work has completed 
state-of-art transformation effects and we would follow their work and compared with 
the proposed model in terms of performances over medical image generation.

On the other hand, with the scaled-up size of computation and increasingly compli-
cated image input, traditional pixel-wise context loss has to deal with the threat of indus-
trial demand. Especially when processing medical images, countless issues and anomaly 
structure are extremely to quantify. To present context loss in a clear way, Mechrez 
et al. [19] designed a context-aware loss that measured the similarity between images by 
feature-wise comparisons. Experiments shown that their proposed context loss is more 
applicable than mean square error (MSE) when dealing with complicated signals. We 
introduced it as the contextual loss and applied it to balance training.

Medical image analysis

Actually, using generative models to tackle with challenges facing in medical analysis has 
a long history. It is worth to point out that comparing with common images, medical 
ones are normally low-resolution and have more noise [22]. Furtherly, when applying 
generative solutions to medical areas, we should put semantic preservation at the first 
place, otherwise possible information loss may result misdiagnosis.

At present time, there are many related studies targeting on medical image style trans-
formation, particularly on specific imaging technologies (CT, MRI etc.). Yang [22] built 
a GAN-based model and successfully transfer low-dose CT scans to high-dose ones, 
which greatly reduced the noise from original images. Besides, style transfer techniques 
also play a considerable role in data augmentation. To increase the diversity of size of 
training set, Frid [15] introduced a multi-resolution transformation model and added 
generations into training, greatly improved the accuracy of liver lesion classification.

All medical research mentioned above are based on the idea of “style transfer + gen-
erative model”. We concluded that main usage of style-transfer technology focus on 
diagnosis assistance and data augmentation. In this work, we aim to focus on models’ 
performances when processing CT scans, all generations would be used to scale up the 
training set.

Context‑ware style transfer model
Since this research focus on massive medical image processing, particularly cases where 
multi-style transformation. We followed the traditional generative architecture, using 
decoding network to avoid extra computational cost, rather than adversarial process.

As illustrated in Fig.  3, the proposed style-transfer model followed similar pipeline 
that shown in Fig. 1. We let X be context input while Y : {Y1,Y2 . . . .Yn} stands for images 
which has target styles we aim to learn. Firstly, both X and Y are feed into the same fea-
ture extractor E . Both feature codes (outputs from the extractor) can be represented as 
E(X) and E(Y ) . Then with the help of adaptive normalization layer, we align the mean 
and variance of E(X) to those of E(Y ) channel by channel (details would be discussed 
in next section). In this way, all channels of feature maps in E(X) can learn the style 
information from E(Y ) , what help enforce the transformation effects. Then the output 
Adain(E(X), E(X)) would be input into decoder network to produce final generations.
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But during training process, having got the output from decoder network, the genera-
tions would then be input into extractor again, intermediate results of which could be used 
to measure the gap between original context and target style. Throughout the entire experi-
ment, we still use two-part loss function (context and style loss, represented as Lcontext and 
Lstyle).

Considering the specific of medical images, we declare the context preservation of them 
should be attached with greater importance than that of general ones. Inspired by Mechrez 
[19], we design a context-aware loss Lcontext . In this way, we reduce semantic loss by match-
ing feature vectors in generations with those from E(x). Next, details of context-ware loss 
and Adain would be introduced.

Adaptive instance normalization

Having got both feature spaces E(X) and E(Y ) , the rest job is to learning style information 
from target input as much as possible. According to the original stylization architecture, 
batch normalization layer is used after each convolution layer, late research began to build 
a specific normalization operation for style transformation. In this part, we introduce the 
adaptive instance normalization layer that accelerates the speed of stylization with only sin-
gle style input.

With given E(x) and E(Y), we try to extract style vectors by contrast normalization. Firstly, 
we computed the mean and variance of E(X) and E(Y ) as follows (denoted with τ and σ 
respectively):

(1)τNC(E(Y )) =
1

HW

H∑

h=1

W∑

w=1

E(Y )nchw

AdaIN(S, T) = σ(T)

(
S − τ (S)

σ (S)

)
+ τ(T)

Fig. 3  Contextual style-transfer Model
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where we let E(X) , E(Y ) be 4-D input tensor ( E(X) , E(Y ) ∈ RN∗C∗H∗W  ), and Let 
E(Y )nchw denote its inside elements. But differ from traditional BN [], here τ (Y ) and 
σ(Y ) are computed cross dimensions independently for each channel.

Then we formulated the layer as:

In which we scale up the normalized context feature map set E(X) with σ(E(Y )) , and 
shift the result with τ(E(Y)) . Intuitively, from Eq. (3), we can see the entire normaliza-
tion do not need any extra learnable weights, indicating faster stylization speed.

As for the benefits of channel-wise computation, we insist that the style of an image 
results from the intersection of all channels. When detecting a certain style infor-
mation, E(Y) would produce a high activation when processed with normalization 
action. The output of AdaIN have the same average activation value for each channel 
but preserves the context of E(X) at the same time.

Contextual‑aware loss

In this section, we would concentrate on models’ ability of context preservation. The 
proposed model follows the setting of two-part loss: context loss and style loss [8]. 
Considering countless small but complicated signals existing in medical images, even 
a little mismatch between generations and original inputs may cause possible mis-
understanding when diagnosing. Despite many relevant works using pixel-wise MSE 
[8, 21], we furtherly highlight the importance of preventing semantic loss [19] during 
transformation process. Besides, we maintain contexts by matching feature vectors 
instead of pixel values.

Assuming generation G and original input X having the same number of features. 
Then both them can be defined as:

In which gi and xj stand for the feature vectors in E(G) and E(X) and |G| = |X | = N . 
Next, we represent the image similarity between G and T as:

The CA(gi, xj) denotes the vector similarity between gi and xj . For each xj , we search 
all gx in G to find which is most close to. Then we get average feature similarity value, 
what can be used to stand for the image similarity between G and X.

As for the details of vector similarity CA(gi, xj) , we introduce the Cosine distance 
[22] CosDi,j , the distance between giandxj is formulated as:

(2)σNC(E(Y )) =

√√√√ 1

HW

H∑

h=1

W∑

w=1

(
E(Y )nchw − τNC(E(Y ))

)2
+ ε

(3)AdaIN(E(X), E(Y)) = σ(E(Y))

(
E(X)− τ (E(X))

σ (E(X))

)
+ τ(E(Y))

(4)G =
{
gi
}
, X =

{
xj
}

(5)CA(G,T) =
1

N

∑

j

max
i

CA
(
gi, xj

)
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In which µt =
1
N

∑
j xj . When Di,j ≪ Di,k , ∀k �= j , we see vector giandxj as similar. 

Besides, in practical experiment, to quickly find the minimum CosDi,j for each xj , we 
start with distance normalization:

where the σ ( σ = 1e − 5 ) denotes a smooth parameter that helps normalization. Next, 
we turn the distance into the similarity metric by exponentiation:

The w is a band-width parameter ( w > 0 ). Lastly, we adapt the vector similarity into a 
scale version (for ease of large-scale calculation):

In this way, the whole image contextual loss [19] between G and T can be formulated 
as:

The parameter ϕ stands for the feature extractor (would be talked in next section). 
While L denotes the layer list which is pre-set by feature map visualization.

Context‑aware model

As illustrated in Fig. 3, we follow the two-part loss function setting.

where the ∂ is the weight that used for balancing training. As for style loss, with com-
monly used Gram matrix loss [8] and pre-recorded layer list [19, 21], we define it as:

The L̂ here is also a list which records possible layers’ name that preserve style infor-
mation of Y .

Experiment and discussion
This work focus style transfer applications on medical images. Supported by Soul 
National University Hospital, we were given over 50 thousand CT scans of spine, 
expected to complete organ segmentation with deep learning technology. Soon we found 

(6)CosDi,j =

(
1−

(
gi − µx

)(
xj − µx

)
∥∥gi − µx

∥∥
2

∥∥xj − µx

∥∥
2

)

(7)C̃osDi,j =
CosDi,j

min
k

CosDi,j + σ

(8)Ei,j = exp

(
1− C̃osDi,j

w

)

(9)CA
(
gi, xj

)
=

Ei,j∑
k Ei,k

(10)Lcontext(G,X, L) = − log
(
CA

(
ϕL(G),ϕL(X)

))

(11)L = Lcontext(G,X, L)+ ∂Lstyle

(12)Lstyle =

L̂∑

i=1

τ

(
ϕL̂(g(Y )

)
− τ

(
ϕL̂(G)

)

2
+

L̂∑

i=1

σ

(
ϕL̂(g(t)

)
− σ

(
ϕL̂(s)

)

2
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that there are several gray scales existing among those CT images, even all of them are 
produced by the same machines and processed by the same staff. Limited by the size of 
training set, we decide apply the proposed model to increase the diversity of given, fur-
therly improving the generalizability of original segmentation model [17].

On the other hand, although image semantics can be maintained by setting speci-
fied loss function, we observe that either style or context loss are computed over feature 
maps, which are accessed by extractor networks. It means a reliable feature extractor 
plays a significant role. Looking back on previous relevant research, we see most of them 
[3, 4, 18] make object-detection networks as their choice, like VGG19 [18], DenseNet [4] 
and ResNet [3]. How about their practical performances over medical images? Secondly, 
the selection context and style layer candidate are determined by the pre-visualization of 
intermediate results, does it really work?

Facing above challenges, our experiments here are divided into three parts: (1) style 
transfer (2) semantic segmentation (3) extractor analysis.

Three‑part experiment

Style transfer

Resulting from the difference of imaging conditions or staff error, CT scans produced 
by the same machine have different gray scales, which poses a great threat to late pro-
cessing. If train with such imbalance dataset, it is certain that models have poor perfor-
mances no matter segmentation or classification.

As shown in Fig. 4, great distribution difference can be observed even with eyes. In 
this case, the proposed contextual model is expected to learn the style of last three image 
but produces images with the first one’s context.

Semantic segmentation

Our goal is to increase the diversity of dataset and then furtherly improve the generaliz-
ability of models that trained with augmented training set.

We pick U-Net [17] as the baseline in this part. By comparing segmentation perfor-
mances before and after adding generations, we make a clear understanding of usages of 
style transfer techniques.

Fig. 4  Style Transfer in CT images
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Extractor analysis

In previous sections, we mentioned that the selection of context / style layer based on 
visualization of feature maps. It means the either context or style loss totally relies on 
the architecture of extractor.

We conclude five extractor architectures mainly used in current works: VGG19, 
ResNet50, ResNet101, DenseNet121, DenseNet169, DenseNet201. All models have 
demonstrated good ability of classification and detection. But how about their perfor-
mance over medical images?

Experiments in this section would focus on encoding. By comparing their transfor-
mation performance when used as feature extractor, we try to choose the best archi-
tecture for style transfer research.

Baselines and metrics

We have built a three-part experiment, baselines and quantitative metrics are intro-
duced as follows:

Metrics

Style transfer  LPIPS distance We aim to produce diverse gray scale CT generations. To 
better evaluate models’ performance over context preservation and style transformation, 
we introduced the Learned Perceptual Image Patch Similarity distance (LPIPS) distance 
[13] as a numerical metric. A lower distance indicates greater similarity between paired 
input (context + style).

Conditional inception score (CIS) This metric can provide a numerical value over 
images’ performances over a classifier [13]. With fine-tuned Inception-V3 [23], a 
lower CIS value means a poorer ability of style transformation.

Semantic segmentation  In the segmentation part, we make pixel accuracy (PA) and 
the mean intersection over union (MIoU) as our metrics to evaluate models’ segmen-
tation ability.

Baselines

Adain synthesis [9] The AdaIN synthesis model realizes style transfer by using Adap-
tive method but uses a MSE as context loss.

Contextual transformation [19] This generative model is trained with contextual 
loss and enables style transfer with unpaired input.

Results and discussions
Style transfer

According to generations produced above (Figs.  5, 6), we found all three generative 
models above have good performances over medical image style transfer. Comparing 
with those from Adain method, no great style difference found over generations. But 
as labeled with red circles, we observe clear semantic loss in generations of Adain 
[9] that using MSE to compute context loss. While for methods which use context-
aware loss (contextual transformation and ours), all semantics from context input are 
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preserved well. But it turns to the style learning, it is clear that outputs from contex-
tual transformation doesn’t learn well, with unclear structure and great style differ-
ence from those from others.

Table 1 provides the diversity and similarity comparison among three methods. Con-
sidering we aim to test the performances of style learning and context preservation, 
the lower CIS and higher LPIPS mean better style transfer performance over CT image 
processing.

At the same time, both methods (Contextual transformation [19] and ours) have lower 
LPIPS value than that using MSE, indicting the contextual loss is better at semantic 

Fig. 5  Figure 5: Outputs after style transformation 1

Fig. 6  Outputs after style transformation 2
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protection. As for style learning, the Adain method performs better not only at its speed 
of style normalization but numerical evaluation over CIS. Numerical evaluations in 
Table  1 confirm with the visual comparison in Figs.  5, 6 and it can be concluded our 
context-aware style transfer model outperforms existing works over medical image 
processing.

Semantic segmentation

From Fig. 7, a great improvement on segmentation result can be seen after adding gen-
erations of style transfer into original training set which has fixed size have single gray-
scale images, it can be viewed as a kind of data augmentation. It can not only solve class 
imbalance but improve the generalizability of model. Although U-NET [17] achieved 
good segmentation results on images following a certain style, it is not able to segment 
scans that have different grayscales.

As shown in Table 2, PA and MIoU greatly improved after augmentation, indicating a 
better segmentation quality. It means style transfer techniques can be a potential choice 
for data augmentation.

Table 1  Numerical comparisons for generations

Methods LPIPS CIS

Ours 0.427 0.124

AdaIN Synthesis 0.516 0.137

Contextual transformation 0.457 0.214

Fig. 7  Spine Segmentation
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Extractor analysis

We mentioned the choice of feature extractor plays a determining role in research 
of style transfer, either on the quality of final generations or practical training. But 
not all encoder-like architectures are appliable for medical images processing, even 
through some studies have applied them on general images.

In this work, we firstly experimented with VGG19 that has made good achieve-
ments on relevant research. Next, we made ResNet/DenseNet-based networks as pos-
sible candidates, exploring their performances over medical images.

Figures 8 and  9 demonstrate extractor candidates’ performance over medical image 
style transfer when trained with MSE and context-aware loss respectively. Consid-
ering context/style layers are selected with pre-visualization on feature maps, we 
assume the way of layer-wise calculation has nothing with final generations. When 
observing performances above, it is clear that VGG19 performs much better than 
other two types of candidates (ResNet-based and DenseNet-based), no matter in 
which loss function they are trained. Despite of style learning, for ResNet50 and 
ResNet101, both them can barely maintain the structure of context input (spine) dur-
ing transformation process, at the cost of small issues. While for DenseNet-based 
networks, semantics of context inputs are totally destroyed, resulting the failure of 
generations. From experiments in this work, we think VGG19 is the best in term of 
semantic preservation among all encoder-like architectures.

Table 2  Segmentation evaluation

Models PA MIoU

U-NET 77.71 31.66

U-NET (augmented) 95.80 69.81

Fig. 8  Generation comparisons among feature extractors (trained with MSE)
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Conclusion
To summarize, following the traditional style transfer pipeline, we proposed a con-
text-aware generative model. In this model, we design a new loss function that help 
prevent semantic loss. Also, with introduced adaptive normalization method, we 
greatly accelerate the speed of stylization and enable the entire model can learn style 
information from single style input.

Experiments show that our work can produce better quality medical images than 
existing research. We also treat this work as a new way of data augmentation. With 
increased data set, we greatly improve the segmentation ability of U-Net.

On the other hand, by experimenting on feature extractors (ResNet50, ResNet101, 
DenseNet169 and DenseNet201), we find that although ResNet and DenseNet 
improved that both them have better ability over feature extraction [3, 4] than VGG, 
VGG19 is still the best feature extractor for medical images.

We conclude that with development of deep learning, encoder-like networks are 
becoming better and better at extracting high-level signals and using high frequencies 
to hide low-level ones which they think not important and make all signals imper-
ceptible to humans [24]. It means the encoding ability of neural networks is increas-
ingly improved, that is why people can continuingly make advances in many advance 
visual tasks. But it is not a good news for generative research, especially for medical 
images that have numberless low-signal signals and noises. Up to now, we conclude 
that VGG19 still be best choice for medical image processing.
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