The performance of mobile devices is advancing with recent developments in information technology. Mobile devices, including smartphones, notebooks, netbooks, and tablets, have improved user efficiency by increasing mobility, providing the convenience of location independence, and making better use of leisure time through a variety of applications. The mobility of these devices is dependent on batteries, and batteries drain fast when high computing is required. Mobile cloud computing is being researched to overcome the limited computing power and storage capacity of mobile devices [1,2,3,4,5,6,7,8,9,10].
Mobile cloud computing is divided into two methods: the use of external cloud services and the use of mobile resource management without a cloud server (MRM), which integrates the computing and storage resources of nearby mobile devices. The use of external cloud services is subdivided based on the development method: a service-oriented architecture, in which mobile devices depend on the Internet to connect to the cloud, and an agent-client architecture, in which mobile devices connect to the cloud through agents such as FemtoCell and Cloudlet [8, 10,11,12,13,14,15,16,17, 28].
MRM should be able to provide the trustworthy resource metadata necessary to integrate computing and storage resources because the infrastructure is composed only of mobile devices. Authentication technology is critical in determining the correctness of the resource information since mobile devices can participate freely in the MRM. Conventional authentication techniques, such as knowledge-based, possession-based, and biometric-based authentication methods, are vulnerable to data falsification via man-in-the-middle (MITM) attacks. Therefore, more powerful authentication technology is required. While 2-factor and multi-factor authentication methods are being used, they require the input of users, which is cumbersome, and they are vulnerable to exposure by shoulder surfing attacks and smudge attacks [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33].
In this paper, the Secure Authentication Management human-centric Scheme (SAMS) is proposed, which uses blockchain to authenticate mobile devices and trust the resource information in the mobile devices participating in the MRM resource pool. The SAMS creates blocks based on the hash value of the master node and the hash value of the resource information in the subordinate client nodes in the MRM, and it then forms blockchain by connecting the hash values and blocks when the client nodes are added. Devices that have not been authenticated through the SAMS in the MRM cannot access or falsify data. This research evaluates the performance of the SAMS by applying the SAMS to the MRM and verifying the impossibility of data falsification by malicious users accessing the SAMS for human-centric aspect.
“Related works” examines the conventional authentication methods and the blockchain for determining the reliability of mobile devices. “Secure Authentication Management human-centric Scheme (SAMS)” describes the block creation process and authentication procedure for securing the mobile devices in the proposed SAMS. “Design of the SAMS” describes the design for applying the SAMS to the MRM. “Implementation of the SAMS” describes the implemented verification for the authentication of the SAMS with human-centric. “Performance evaluation” analyzes the elapsed time for the authentication of the SAMS and verifies the impossibility of falsifying resource information by artificially attempting to access and falsify data. Finally, “Conclusion” provides the conclusions and suggests future research plans.