Li S, Hedley M, Bengston K, Humphrey D, Johnson M, Ni W (2019) Passive localization of standard Wi-Fi devices. IEEE Syst J. https://doi.org/10.1109/JSYST.2019.2903278
Article
Google Scholar
Cui Y, Zhang Y, Huang Y, Wang Z, Fu H (2019) Novel Wi-Fi/MEMS integrated indoor navigation system based on two-stage EKF. Micromachines 10(3):198. https://doi.org/10.3390/mi10030198
Article
Google Scholar
Li Y, Zhuang Y, Zhang P, Lan H, Niu X, El-Sheimy N (2017) An improved inertial/Wi-Fi/magnetic fusion structure for indoor navigation. Inf Fusion 34(101–119):1566–2535
Google Scholar
Kunhoth J, Karkar A, Al-Maadeed S (2020) Indoor positioning and wayfinding systems: a survey. Hum Cent Comput Inf Sci 10:18
Google Scholar
Ali MU, Hur S, Park Y (2019) Wi-Fi-based effortless indoor positioning system Using IoT sensors. Sensors 19(7):1496. https://doi.org/10.3390/s19071496
Article
Google Scholar
Seol S, Lee EK, Kim W (2017) (2017) Indoor mobile object tracking using RFID. Future Gener Comput Syst 76:443–451
Google Scholar
Lindo A, García E, Ureña J, del Carmen Pérez M, Hernández Á (2015) Multiband waveform design for an ultrasonic indoor positioning system. IEEE Sensors J 15(12):7190–7199
Google Scholar
Zhou C, Yuan J, Liu H, Qiu J (2017) Bluetooth indoor positioning based on RSSI and Kalman filter. Wirel Pers Commun 96:4115–4130
Google Scholar
Chen P, Kuang Y, Chen X (2017) A UWB/improved PDR integration algorithm applied to dynamic indoor positioning for pedestrians. Sensors 17:2065
Google Scholar
Aykaç M, Ergun E, Noor BA (2017) ZigBee-based indoor localization system with the personal dynamic positioning method and modified particle filter estimation. Analog Integr Circuits Signal Process 92(2):263–279
Google Scholar
Wang Ke, Nirmalathas Ampalavanapillai, Lim Christina, Alameh Kamal, Li Hongtao, Skafidas Efstratios (2017) Indoor infrared optical wireless localization system with background light power estimation capability. Opt Express 25:22923–22931 (2017)
Google Scholar
Li X, Zhang P, Guo J, Wang J, Qiu W (2017) A new method for single-epoch ambiguity resolution with indoor pseudolite positioning. Sensors 17(4):921
Google Scholar
Shen G, Chen Z, Zhang P, Moscibroda T, Zhang Y, Walkie-Markie (2013) Indoor pathway mapping made easy. In: Proceedings of the 10th USENIX conference on networked systems design and implementation, Lombard, IL, USA, 2–5 April 2013. pp 85–98
Zhou B, Li Q, Mao Q, Tu W, Zhang X, Chen L (2015) ALIMC (2015) Activity landmark-based indoor mapping via crowd sourcing. IEEE Trans Intell Transp Syst 16:2774–2785
Google Scholar
Wu C, Yang Z, Liu Y, Xi W (2013) WILL (2013) Wireless indoor localization without site survey. IEEE Trans Parallel Distrib Syst 24:839–848
Google Scholar
Gwon Y, Jain R (2004) Error characteristics and calibration-free techniques for wireless LAN-based location estimation. In: Proceedings of the second international workshop on mobility management & wireless access protocols, Philadelphia, PA, USA 1 October 2004. pp 2–9
Liu H, Darabi H, Banerjee P, Liu J (2007) Survey of wireless indoor positioning techniques and systems. IEEE Trans Syst Man Cybern Part C 37(6):1067–1080 Nov. 2007
Google Scholar
Cai C, Zheng R, Li J, Zhu L, Pu H, Hu M (2020) Asynchronous Acoustic Localization and Tracking for Mobile Targets. IEEE Internet Things J 7(2):830–845
Google Scholar
Hang Wu, Ziliang Mo, Jiajie Tan, Suining He, Gary Chan S-H (2019) Efficient indoor localization based on geomagnetism. ACM Trans Sens Netw 15, 4, Article 42 (October 2019), 25 pages
Liu M, Cheng L, Qian K (2020) Indoor acoustic localization: a survey. Hum Cent Comput Inf Sci 10:2
Google Scholar
Beomju Shin, Jung Ho Lee, Taikjin Lee and Hyung Seok Kim (2012) Enhanced weighted K-nearest neighbor algorithm for indoor Wi-Fi positioning systems. In: 2012 8th international conference on computing technology and information management (NCM and ICNIT), Seoul, 2012. pp 574–577
Fang BT (1990) Simple solutions for hyperbolic and related position fixes. IEEE Trans Aerosp Electron Syst 26(5):748–753 Sept. 1990
Google Scholar
Peterson BB, Kmiecik C, Hartnett R, Thompson PM, Mendoza J, Nguyen H (1998) Spread spectrum indoor geolocation. J Inst Navigat 45(2):97–102
Google Scholar
Correal NS, Kyperountas S, Shi Q, Welborn M (2003) An ultrawideband relative location system. In: Proc. IEEE conf. ultra wideband syst. technol., pp 394–397
Torrieri D (1984) Statistical theory of passive location systems. IEEE Trans Aerosp Electron Syst 20(2):183–197 Mar. 1984
Google Scholar
Van Veen BD, Buckley KM (1988) Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag 5(2):4–24
Google Scholar
Ottersten B, Viberg M, Stoica P, Nehorai A (1993) Exact and large sample ML techniques for parameter estimation and detection in array processing. In: Haykin SS, Litva J, Shepherd TJ (eds) Radar array processing. Springer-Verlag, New York, pp 99–151
Google Scholar
Stoica P, Moses RL (1997) Introduction to spectral analysis. Prentice-Hall, Englewood Cliffs, p 1997
MATH
Google Scholar
Li B, Wang Y, Lee HK, Dempster A, Rizos C (2005) Method for yielding a database of location fingerprints in WLAN. IEE Proc Commun 152(5):580–586
Google Scholar
Jekabsons Gints, Kairish Vadim, Zuravlyov Vadim (2011) An analysis of Wi-Fi based indoor positioning accuracy. Sci J Riga Tech Univ Comput Sci 44(1):131–137
Google Scholar
Dardari D, Closas P, Djurić PM (2015) Indoor tracking: theory, methods, and technologies. IEEE Trans Vehic Technol 64(4):1263–1278
Google Scholar
Turgut Zeynep, Aydin Gulsum Zeynep Gurkas, Sertbas Ahmet (2016) Indoor localization techniques for smart building environment. Procedia Comput Sci 83:1176–1181
Google Scholar
Abbas N, Zhang Y, Taherkordi A, Skeie T (2018) Mobile edge computing: a survey. IEEE Internet Things J 5(1):450–465
Google Scholar
Satyanarayanan M, Bahl P, Caceres R, Davies M (2009) The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput 8(4):14–23 Oct.–Dec. 2009
Google Scholar
Liu Y, Lee MJ, Zheng Y (2016) Adaptive multi-resource allocation for cloudlet-based mobile cloud computing system. IEEE Trans Mob Comput 15(10):2398–2410
Google Scholar
Verbelen T, Simoens P, De Turck F, Dhoedt B (2012) Cloudlets: bringing the cloud to the mobile user. In: Proc. 3rd ACM workshop mobile cloud comput. services (MCS), pp 29–36
El-Barbary AE-HG, El-Sayed LAA, Aly HH, El-Derini MN (2015) A cloudlet architecture using mobile devices. In: Proc IEEE/ACS 12th int conf comput syst appl (AICCSA), pp 1–8
Jararweh Y (2016) SDMEC: Software defined system for mobile edge computing. In: Proc. IEEE int. conf. cloud eng. workshop (IC2EW). Berlin, Germany, pp 88–93
Habak K, Ammar M, Harras KA, Zegura E (2015) Femto clouds: leveraging mobile devices to provide cloud service at the edge. In: Proc. IEEE 8th int. conf. cloud comput., New York, NY, USA, pp 9–16
Kanaan M, Pahlavan K (2004) A comparison of wireless geolocation algorithms in the indoor environment. In: 2004 IEEE wireless communications and networking conference (IEEE Cat. No.04TH8733), Vol.1, Atlanta, GA, USA, pp 177–182
Gunther A, Hoene C (2005) Measuring round trip times to determine the distance between WLAN nodes. In: Proc. netw. 2005., Waterloo, ON, Canada, pp 768–779
Zhou J, Chu KM-K, Ng JK-Y (2005) Providing location services within a radio cellular network using ellipse propagation model. In: Proc 19th int. conf. adv. inf. netw. appl., pp 559–564
Ugur B, Tenruh M (2014) Increasing RSSI localization accuracy with distance reference anchor in wireless sensor networks. Acta Polytech Hung 11(8):103–120
Google Scholar
Zafari F, Gkelias A, Leung KK (2019) Survey of indoor localization systems and technologies. IEEE Commun Surv Tutor 21(3):2568–2599
Google Scholar
Siegwart R, Nourbakhsh IR (2004) Introduction to autonomous mobile robots. MIT Press, Cambridge, p 2004
Google Scholar
Lim J, Lee S, Tewolde G, Kwon J (2018) Indoor localization and navigation for a mobile robot equipped with rotating ultrasonic sensors using a smartphone as the robot’s brain. In: Proc. IEEE int. conf. electro/inf. technol. (EIT), May 2015, pp 621–625
Cordeiro TF (2014) Sistema de deteção e contorno de obstáiculos para robótica móvel baseado em sensor Kinect, M.S. thesis, Dept. Ind. Eng., School Ind. Eng., Polytechn. Inst. Bragança, Bragança, Portugal, p 104
Bessa JA, Barroso DA, da Rocha Neto AR, de Alexandria AR (2015) Global location of mobile robots using artificial neural networks in omnidirectional images. IEEE Latin Am Trans 13(10):34053405–3414
Google Scholar
Zhang H, Zhang C, Yang W, Chen C-Y (2015) Localization and navigation using QR code for mobile robot in indoor environment. In: Proc. IEEE int. conf. robot. biomimetics (ROBIO), pp 2501–2506
Da Mota FAX, Rocha MX, Rodrigues JJPC, De Albuquerque VHC, De Alexandria AR (2018) Localization and navigation for autonomous mobile robots using petri nets in indoor environments. IEEE Access 6:31665–31676
Google Scholar
Li W, Chen Z, Gao X, Liu W, Wang J (2019) Multimodel framework for indoor localization under mobile edge computing environment. IEEE Internet Things J 6(3):4844–4853
Google Scholar
Murata M, Ahmetovic D, Sato D, Takagi H, Kitani KM, Asakawa C (2019) Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive Mob Comput 57:14–32
Google Scholar
Lee K, Nam Y, Min SD (2018) An indoor localization solution using Bluetooth RSSI and multiple sensors on a smartphone. Multimed Tools Appl 77:12635–12654
Google Scholar
Satan A (2018) Bluetooth-based indoor navigation mobile system, 2018. In: 19th International Carpathian control conference (ICCC). Szilvasvarad, pp 332–337
Satan A, Toth Z (2018) Development of Bluetooth based indoor positioning application. In: 2018 IEEE international conference on future IoT technologies (Future IoT), Eger
Yu N, Zhan X, Zhao S, Wu Y, Feng R (2018) A precise dead reckoning algorithm based on bluetooth and multiple sensors. IEEE Internet Things J 5(1):336–351 Feb. 2018
Google Scholar
Sadowski S, Spachos P (2018) RSSI-based indoor localization with the Internet of Things. IEEE Access 6:30149–30161 2018
Google Scholar
Yang L, Qi J, Song D, Xiao J, Han J, Xia Y (2016) Survey of robot 3D path planning algorithms. J Control Sci1 Eng 2016(2016)
Fadzli SA, Abdulkadir SI, Makhtar M, Jamal AA (2015) Robotic indoor path planning using Dijkstra’s algorithm with multi-layer dictionaries. In: 2015 2nd international conference on information science and security (ICISS), Seoul, pp 1–4
Lui G, Gallagher T, Li B, Dempster AG, Rizos C (2011) Differences in RSSI readings made by different Wi-Fi chipsets: a limitation of WLAN localization. In: Proceedings of the 2011 international conference on localization and GNSS (ICL-GNSS), Tampere, Finland, 29–30
Golestani A, Petreska N, Wilfert D, Zimmer C (2014) Improving the precision of RSSI-based low-energy localization using path loss exponent estimation. In: Proceedings of the 2014 11th workshop on positioning, navigation and communication (WPNC), Dresden, Germany, 12–13 March, pp 1–6
Nowak T, Hartmann M, Zech T, Thielecke J (2016) A path loss and fading model for RSSI-based localization in forested areas. In: proceedings of the 2016 IEEE-APS topical conference on Antennas and Propagation in Wireless Communications (APWC), Cairns, Australia, 19–23 September 2016, pp 110–113
Nguyen HA, Guo H, Low KS (2011) Real-time estimation of sensor bode’s position using particle swarm optimization with log-barrier constraint. IEEE Trans Instrum Meas 60:3619–3628
Google Scholar
Tuta J, Juric MB (2016) A self-adaptive model-based Wi-Fi indoor localization method. Sensors 16:2074 2016
Google Scholar
Li G, Geng E, Ye Z, Xu Y, Lin J, Pang Y (2018) Indoor Positioning Algorithm Based on the Improved RSSI Distance Model. Sensors 18:2820
Google Scholar
Kumar P, Reddy L, Varma S (2009) Distance measurement and error estimation scheme for RSSI based localization in wireless sensor networks. In: 2009 fifth IEEE conference on wireless communication and sensor networks (WCSN), IEEE, New York, pp 1–4
Du Y, Yang D, Xiu C (2015) A novel method for constructing a Wi-Fi positioning system with efficient manpower. Sensors 15:8358–8381
Google Scholar
Khalil L, Jung P (2015) Scaled Unscented Kalman Filter for RSSI-based Indoor Positioning and Tracking. In: 2015 9th international conference on next generation mobile applications, services and technologies, Cambridge, pp 132–137
Ettlinger A, Neuner H, Burgess T (2018) Development of a Kalman filter in the Gauss-Helmert model for reliability analysis in orientation determination with smartphone sensors. Sensors 18:414
Google Scholar
Yim Jaegeol, Park Chansik, Joo Jaehun, Jeong Seunghwan (2008) Extended Kalman filter for wireless LAN based indoor positioning. Decis Support Syst 45(4):960–971
Google Scholar
Wang B, Liu X, Yu B, Jia R, Gan X (2019) An improved Wi-Fi positioning method based on fingerprint clustering and signal weighted Euclidean distance. Sensors 19:2300
Google Scholar
Lu J, Li X (2019) Robot indoor location modeling and simulation based on Kalman filtering. EURASIP J Wirel Commun Netw. https://doi.org/10.1186/s13638-019-1462-9
Article
Google Scholar
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. Accessed 10 Mar 2019
https://www.raspberrypi.org/blog/piserver/. Accessed 30 Mar 2019
https://www.mysql.com/downloads/. Accessed 12th Apr 2019
https://learn.sparkfun.com/tutorials/setting-up-a-raspberry-pi-3-as-an-access-point/all. Accessed 10th May 2019